Primeros pasos con Omega2

Hace unos meses se anunció el proyecto de financiación de un nuevo ordenadorcito, el Omega2: $5 Linux Computer with Wi-Fi, Made for IoT. Tengo que decir que lo vi y no le presté atención, así que no participé en el proyecto. Mi hermano lo hizo y además encargó un par de cacharritos para darme uno.

Lo tengo en casa desde navidad pero hasta ahora no había tenido tiempo de escribir esta nota. En este caso lo probé y pude configurarlo con mucha rapidez. Desde el punto de vista de puesta en marcha el proyecto ha trabajado muy bien si nos olvidamos de un par de detalles que comentaremos luego: alimentamos la placa, esperamos a que arranque y crea un punto de acceso WiFi. La documentación es clara y se sigue bien. Desde cualquier otro ordenador podemos conectarnos a ese punto de acceso. Navegando desde esa red podremos conectarnos a la dirección del Omega y hacer la configuración inicial desde el navegador (o mediante ssh). Entre otras cosas le proporcionamos los datos de nuestra red WiFi y entonces se conecta. Personalmente me gusta más la configuración inicial del C.H.I.P. pero encuentro esta bastante cómoda y amigable (y mucho más que tener que buscar una pantalla a la que conectar el cacharrito, aunque sea la de la TV).

En cuanto a las pegas inciales dos, pero notables: la alimentación de la placa es a 3.3V (si compramos el ‘dock’ entonces podremos tener acceso a un puerto USB y alimentar el cacharrito desde allí, entre otras ventajas. Pero entonces hablamos de un ordenador de 20 dólares y no 5). La segunda pega es la separación de los pines: no es la estándar de una placa de prototipado así que no es posible pincharía allí y cablear, hay que poner los cables directamente a los pines (a lo mejor hay placas de prototipado con esa ditancia de pines, lo desconozco). La estoy alimentando gracias a que tenía una fuente de alimentación YwRobot.

Omega 2

Como decíamos arriba la documentación para ponerla en marcha y dar los primeros pasos está muy bien Onion Omega2 Documentation y ponerla en marcha es sencillo.

Una vez que conseguimos que arranque disponemos de un sistema funcionando que configuramos a nuestro gusto y podemos empezar a trabajar. Como punto positivo frente a otras placas nos ha parecido muy buena idea que genere su propia red y de manera simultánea pueda conectarse al router mediante interfaces virtuales. Así se pueden hacer proyectos (la documentación lo explica) para hacer un extensor de WiFi (llevar la WiFi a algún punto lejano, haciendo de repetidor), un punto de acceso, … Otro punto interesante es que utiliza LinuxWRT, con el inconveniente de tener que aprender a manejar otro gestor de paquetes, el opkg (aunque la documentación ayuda también en este aspecto).

Entramos por ssh:

El ssh en Omega 2

En cuanto al uso, tengo sentimientos enfrentados: es pequeñita, barata y sencilla de poner en marcha. Pero cuando empezamos a trabajar con el modelo básico, casi no podemos hacer nada (por falta de espacio): para empezar, hay que elegir entre tener Git o Python, porque no hay espacio libre suficiente para los dos. Podríamos aumentar el almacenamiento disponible (y hay instrucciones para ello) pero sería mejor teniendo un puerto USB para conectarlo.

Entre sus características

  • Procesador 580MHz MIPS CPU.
  • Memoria 64MB (el Omega 2+ tiene 128) y 16 Mb de almacenamiento (32 en el caso del Plus).
  • b/g/n Wi-Fi
  • Varios puertos para conectividad con diversos sistemas externos.

Tiene USB 2.0, pero sin el dock no tendremos el conector.

El tamaño es pequeñito, la mitad de lo que ocupa el C.H.I.P. aproximadamente y un poquito más que un NodeMCU.

Comparando tamaños: C.H.I.P., Omega2, NodeMCU, Arduino, Pine64, Raspberry Pi

Una cosa que me preocupaba de estos aparatitos son las prestaciones. Son bastante limitadas y he preparado una tabla para que se vea mejor. La comparación se hará con una Raspberry Pi (Model B), un C.H.I.P., una Pine 64 y también he hecho comparaciones con un PC de escritorio viejo (fecha alrededor de 2008), y mi portátil, que también tiene unos cuantos años (fecha alrededor de 2011):

Dispositivo microsegundos/iteración Nº de cores bogomips Procesador
Raspberry Pi 5.944 1 697,95 ARMv6-compatible processor rev 7 (v6l)
Omega 3 3.916 1 385,84 MIPS 24KEc V5.5
C.H.I.P. 1.125 1 1001,88 ARMv7 Processor rev 2 (v7l)
Pine 64 624 4 624 AArch64 Processor rev 4 (aarch64)
PC Escritorio 204 1 6800,56 Intel(R) Pentium(R) 4 CPU 3.40GHz
Portátil 69 2 5382,47 Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz

La conclusión para mi fue que estos cacharritos pueden cumplir un papel en muchos momentos (y lo cumplen) pero no debemos olvidar las limitaciones en cuanto a potencia, que no permitirían (aún) pensar en ellos como sustitutos de un computador de sobremesa (salvo que tengamos requisitos muy austeros).

El sistema utilizado para medir las ‘prestaciones’ es muy básico, utilicé el código que proporcionaban en Performance Comparison - C++ / Java / Python / Ruby/ Jython / JRuby / Groovy.

En esta serie hemos publicado hasta ahora:

Sobre la Raspberry no hice un primeros pasos.

Divulgación de vulnerabilidades en la industria del automóvil

Un coche Los fabricantes de automóviles han permanecido muchos años de espaldas a la informatización. Ahora empiezan a utilizarlo como argumento de ventas (esencialmente a través de sistemas de comunicación y entretenimiento) pero en medio la informatización de la instrumentación de los coches ha sido más o menos inevitable. Y la aparicion de fallos también, claro (ver Coches y ataques). La reacción de los fabricantes era, hasta hace no mucho, atacar a los investigadores pensando que así evitarían que se divulgase su conocimiento.

Por eso traemos aquí GM embraces white-hat hackers with public vulnerability disclosure program donde se decía cómo el conocido fabricante había decidido no perseguir a los investigadores que informaran sobre fallos de seguridad, mediante un programa de divulgación responsable de vulnerabilidades:

“We very highly value third-party security research,” Massimilla said. He explained that under the program, those third parties can reveal vulnerabilities they find with the guarantee that GM will work with them and not take legal action—as long as they follow the fairly straightforward guidelines posted on the program’s portal.

Almacenamiento seguro de contraseñas

Sistemas de almacenamiento Primero, que quede clara una cosa: las contraseñas no se almacenan, se almacena una transformación unidireccional que permita comprobar que la persona que la utiliza la conoce, pero que impide (en la medida de lo posible) que el que nos pudiera robar los datos los utilice de manera directa.

En Storing Passwords in a Highly Parallelized World hablan de un tema al que se le está prestando mucha atención en los últimos años: no se trata sólo de almacenar las contraseñas de manera que sean ilegibles, sino que hay que tener en cuenta los ataques que pueden sufrir si alguien consigue acceder a la información y atacarla en condiciones favorables. En ese sentido, se favorecen métodos que añaden coste computacional (cuando se trata de una sola contraseña, con la clave correcta, es un coste asumible; si se trata de hacer pruebas empieza a ser interesante desde el punto de vista defensivo):

bcrypt is a password hash. The difference to cryptographic hashes like SHA-1 is that it adds a computational cost to password hashing. In other words: it’s intentionally slow. The reasoning is that if someone steals the hashes of the passwords of your customers, it’s going to be much more expensive to compute the passwords (which are probably also the passwords to their e-mail accounts) to those hashes.

Luego habla de una competición para generar nuevos métodos de hash criptográficos y del ganador, haciendo algunas pruebas de demostración en Python:

Argon2 is a secure, memory hard password hash. It comes in two variants but for password hashing only the side-channel hardened Argon2i is relevant. On 2015-11-05, an IETF draft has been submitted in order to make it an official Internet standard ASAP.

Números aleatorios seguros en Javascript

Aleatorio Otra nota sobre números aleatorios seguros. En este caso nos avisaban en V8 Javascript Fixes (Horrible!) Random Number Generator sobre un error en la forma de generar números aleatorios en Javascript que tiene el interés de proporcionar una explicación general bastante buena, como alguien encontró el fallo al encontrar una colisión en un identificador de sesión (tan sólo un mes después de empezar) y cómo los programadores eligieron la versión incorrecta de un método que no estaba mal.

En TIFU by using Math.random() cuentan los detalles sobre la historia en primera persona. Sin olvidar que estaban utilizando un generador de números aleatorios que no era criptográfico.

De paso, podemos probar el generador de nuestro navegador en este generador de imágenes aleatorias.